

# CERTIFICATE OF ACCREDITATION

## The ANSI National Accreditation Board

Hereby attests that

Geoform, Inc. 16832 Gramercy Place Gardena, CA 90247

Fulfills the requirements of

ISO/IEC 17025:2017

In the field of

## **DIMENSIONAL MEASUREMENT**

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <a href="www.anab.org">www.anab.org</a>.

Jason Stine, Vice President

Expiry Date: 21 November 2025 Certificate Number: AD-2822









## **SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017**

## Geoform, Inc.

16832 Gramercy Place Gardena, CA 90247 Steve Farentinos 424-292-3407

### DIMENSIONAL MEASUREMENT

Valid to: November 21, 2025 Certificate Number: AD-2822

#### 1 Dimensional

| Parameter/Equipment          | Range                  | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or<br>Equipment                                       |
|------------------------------|------------------------|-------------------------------------------|------------------------------------------------------------------------------------------|
| Dimensional Measurement – 1D | Up to 1 in             | 140 μin                                   | Outside Micrometers<br>utilized as Reference<br>Standard for Dimensional<br>Measurement. |
|                              | Up to 6 in Up to 12 in | 1 400 μin<br>2 600 μin                    | Calipers utilized as<br>Reference Standard for<br>Dimensional Measurement.               |

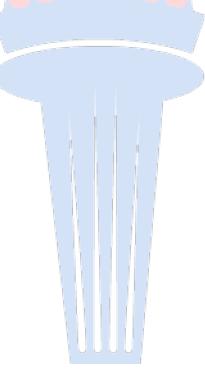
### 3 Dimensional

| Parameter/Equipment                       | Range                                                        | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or<br>Equipment                                       |
|-------------------------------------------|--------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------|
| Dimensional Measurement – 3D <sup>1</sup> | X = Up to 1 000 mm<br>Y = Up to 1 200 mm<br>Z = Up to 600 mm | $(4.3 + 0.014L) \mu m$                    | Coordinate Measuring Machine utilized as Reference Standard for Dimensional Measurement. |
|                                           | X = Up to 1 000 mm<br>Y = Up to 1 600 mm<br>Z = Up to 600 mm | $(6.3 + 0.012L) \mu m$                    | Coordinate Measuring Machine utilized as Reference Standard for Dimensional Measurement. |
|                                           | X = Up to 900 mm<br>Y = Up to 1 200 mm<br>Z = Up to 800 mm   | $(4.5 + 0.013L) \mu m$                    | Coordinate Measuring Machine utilized as Reference Standard for Dimensional Measurement. |





#### 3 Dimensional


| Parameter/Equipment                       | Range       | Expanded Uncertainty of Measurement (+/-) | Reference Standard,<br>Method, and/or<br>Equipment                                                                                        |
|-------------------------------------------|-------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Dimensional Measurement – 3D <sup>1</sup> | Up to 2.5 m | (77 + 0.014 <i>L</i> ) μm                 | Articulating Arm Coordinate Measuring Machine utilized as Reference Standard for Dimensional Measurement.                                 |
|                                           | Up to 2.5 m | (89 + 0.021 <i>L</i> ) μm                 | Articulating Arm Coordinate Measuring Machine with Scanner (Laser Line Probe) utilized as Reference Standard for Dimensional Measurement. |

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

#### Notes:

- 1. L = length in mm.
- 2. This scope is formatted as part of a single document including Certificate of Accreditation No. AD-2822.

Jason Stine, Vice President

